Energy management systems (EMS) are becoming increasingly important in order to utilize the continuously growing curtailed renewable energy. Promising energy storage systems (ESS), such as batteries and green hydrogen should be employed to maximize the efficiency of energy stakeholders. However, optimal decision-making, i.e., planning the leveraging between different strategies, is confronted with the complexity and uncertainties of large-scale problems. Here, we propose a sophisticated deep reinforcement learning (DRL) methodology with a policy-based algorithm to realize the real-time optimal ESS planning under the curtailed renewable energy uncertainty. A quantitative performance comparison proved that the DRL agent outperforms the scenario-based stochastic optimization (SO) algorithm, even with a wide action and observation space. Owing to the uncertainty rejection capability of the DRL, we could confirm a robust performance, under a large uncertainty of the curtailed renewable energy, with a maximizing net profit and stable system. Action-mapping was performed for visually assessing the action taken by the DRL agent according to the state. The corresponding results confirmed that the DRL agent learns the way like what a human expert would do, suggesting reliable application of the proposed methodology.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Federated learning provides an effective paradigm to jointly optimize a model benefited from rich distributed data while protecting data privacy. Nonetheless, the heterogeneity nature of distributed data makes it challenging to define and ensure fairness among local agents. For instance, it is intuitively "unfair" for agents with data of high quality to sacrifice their performance due to other agents with low quality data. Currently popular egalitarian and weighted equity-based fairness measures suffer from the aforementioned pitfall. In this work, we aim to formally represent this problem and address these fairness issues using concepts from co-operative game theory and social choice theory. We model the task of learning a shared predictor in the federated setting as a fair public decision making problem, and then define the notion of core-stable fairness: Given $N$ agents, there is no subset of agents $S$ that can benefit significantly by forming a coalition among themselves based on their utilities $U_N$ and $U_S$ (i.e., $\frac{|S|}{N} U_S \geq U_N$). Core-stable predictors are robust to low quality local data from some agents, and additionally they satisfy Proportionality and Pareto-optimality, two well sought-after fairness and efficiency notions within social choice. We then propose an efficient federated learning protocol CoreFed to optimize a core stable predictor. CoreFed determines a core-stable predictor when the loss functions of the agents are convex. CoreFed also determines approximate core-stable predictors when the loss functions are not convex, like smooth neural networks. We further show the existence of core-stable predictors in more general settings using Kakutani's fixed point theorem. Finally, we empirically validate our analysis on two real-world datasets, and we show that CoreFed achieves higher core-stability fairness than FedAvg while having similar accuracy.
translated by 谷歌翻译
培训和评估语言模型越来越多地要求构建元数据 - 多样化的策划数据收集,并具有清晰的出处。自然语言提示最近通过将现有的,有监督的数据集转换为多种新颖的预处理任务,突出了元数据策划的好处,从而改善了零击的概括。尽管将这些以数据为中心的方法转化为生物医学语言建模的通用域文本成功,但由于标记的生物医学数据集在流行的数据中心中的代表性大大不足,因此仍然具有挑战性。为了应对这一挑战,我们介绍了BigBio一个由126个以上的生物医学NLP数据集的社区库,目前涵盖12个任务类别和10多种语言。 BigBio通过对数据集及其元数据进行程序化访问来促进可再现的元数据策划,并与当前的平台兼容,以及时工程和端到端的几个/零射击语言模型评估。我们讨论了我们的任务架构协调,数据审核,贡献指南的过程,并概述了两个说明性用例:生物医学提示和大规模,多任务学习的零射门评估。 BigBio是一项持续的社区努力,可在https://github.com/bigscience-workshop/biomedical上获得。
translated by 谷歌翻译
人类的持续学习(CL)能力与稳定性与可塑性困境密切相关,描述了人类如何实现持续的学习能力和保存的学习信息。自发育以来,CL的概念始终存在于人工智能(AI)中。本文提出了对CL的全面审查。与之前的评论不同,主要关注CL中的灾难性遗忘现象,本文根据稳定性与可塑性机制的宏观视角来调查CL。类似于生物对应物,“智能”AI代理商应该是I)记住以前学到的信息(信息回流); ii)不断推断新信息(信息浏览:); iii)转移有用的信息(信息转移),以实现高级CL。根据分类学,评估度量,算法,应用以及一些打开问题。我们的主要贡献涉及I)从人工综合情报层面重新检查CL; ii)在CL主题提供详细和广泛的概述; iii)提出一些关于CL潜在发展的新颖思路。
translated by 谷歌翻译
通常用于分析复杂数据集的维度减少和聚类技术,但它们的结果通常不容易解释。我们考虑如何支持用户在散点图上解释视表位结构,其中轴不直接解释,例如使用维度减少方法将数据投射到二维空间上。具体地,我们提出了一种新方法来自动计算可解释的聚类,其中说明在原始的高维空间中,并且群集在低维投影中相干。它通过使用信息理论提供复杂性和所提供信息量之间的可调平衡。我们研究了这个问题的计算复杂性,并对解决方案的搜索空间引入了高效,可调,贪婪优化算法的限制。此外,该算法还在称为excus的交互式工具中实现。几个数据集的实验突出显示,excrus可以提供信息丰富的和易于理解的模式,并且他们公开了算法有效的地方,并且考虑到可调性和可扩展性的余地有改进的空间。
translated by 谷歌翻译
无监督的特征学习通常会发现捕获复杂数据结构的低维嵌入。对于专家的任务可获得专家,将其纳入学习的代表可能会导致更高质量的嵌入品。例如,这可以帮助人们将数据嵌入给定的簇数,或者容纳阻止一个人直接在模型上衍生数据分布的噪声,然后可以更有效地学习。然而,缺乏将不同的先前拓扑知识集成到嵌入中的一般工具。虽然最近已经开发了可微分的拓扑层,但可以(重新)形状嵌入预定的拓扑模型,他们对代表学习有两个重要的局限性,我们在本文中解决了这一点。首先,目前建议的拓扑损失未能以自然的方式代表诸如群集和耀斑的简单模型。其次,这些损失忽略了对学习有用的数据中的所有原始结构(例如邻域)信息。我们通过引入一组新的拓扑损失来克服这些限制,并提出其用法作为拓扑正规规范数据嵌入来自然代表预定模型的一种方法。我们包括彻底的综合和实际数据实验,突出了这种方法的有用性和多功能性,其中应用范围从建模高维单胞胎数据进行建模到绘图嵌入。
translated by 谷歌翻译
数据点之间的距离被广泛应用于机器学习。然而,当被噪声干扰,这些距离 - 因而基于他们的模型 - 可能会失去在高维其效用。事实上,噪音小边际效应可能随后迅速积累,从地面实况移经验最近,最远的邻居了。在本文中,我们精确地使用渐近概率表达式表征在嘈杂的高维数据这样的效果。此外,尽管先前已经指出,当距离集中发生邻里查询变得毫无意义且不稳定,这意味着在数据最远和最近的邻居之间的差相对的歧视,我们认为这不一定是当我们分解的情况下在一个地面实况数据 - 这是我们的目标是回收 - 和噪声分量。更具体地说,我们推导出特定的条件下,受噪声影响的实证邻里关系仍可能即使距离集中发生是真实的。我们包括我们的结果的透彻实证检验,以及有趣的实验中,我们的推导相移,其中邻居成为随机的或不被证明是相同的相移,其中常见的降维的方法不佳或井执行用于回收低维重建的密集噪声高维数据。
translated by 谷歌翻译
The growing interest in intelligent services and privacy protection for mobile devices has given rise to the widespread application of federated learning in Multi-access Edge Computing (MEC). Diverse user behaviors call for personalized services with heterogeneous Machine Learning (ML) models on different devices. Federated Multi-task Learning (FMTL) is proposed to train related but personalized ML models for different devices, whereas previous works suffer from excessive communication overhead during training and neglect the model heterogeneity among devices in MEC. Introducing knowledge distillation into FMTL can simultaneously enable efficient communication and model heterogeneity among clients, whereas existing methods rely on a public dataset, which is impractical in reality. To tackle this dilemma, Federated MultI-task Distillation for Multi-access Edge CompuTing (FedICT) is proposed. FedICT direct local-global knowledge aloof during bi-directional distillation processes between clients and the server, aiming to enable multi-task clients while alleviating client drift derived from divergent optimization directions of client-side local models. Specifically, FedICT includes Federated Prior Knowledge Distillation (FPKD) and Local Knowledge Adjustment (LKA). FPKD is proposed to reinforce the clients' fitting of local data by introducing prior knowledge of local data distributions. Moreover, LKA is proposed to correct the distillation loss of the server, making the transferred local knowledge better match the generalized representation. Experiments on three datasets show that FedICT significantly outperforms all compared benchmarks in various data heterogeneous and model architecture settings, achieving improved accuracy with less than 1.2% training communication overhead compared with FedAvg and no more than 75% training communication round compared with FedGKT.
translated by 谷歌翻译
Most existing text-video retrieval methods focus on cross-modal matching between the visual content of offline videos and textual query sentences. However, in real scenarios, online videos are frequently accompanied by relevant text information such as titles, tags, and even subtitles, which can be utilized to match textual queries. This inspires us to generate associated captions from offline videos to help with existing text-video retrieval methods. To do so, we propose to use the zero-shot video captioner with knowledge of pre-trained web-scale models (e.g., CLIP and GPT-2) to generate captions for offline videos without any training. Given the captions, one question naturally arises: what can auxiliary captions do for text-video retrieval? In this paper, we present a novel framework Cap4Video, which makes use of captions from three aspects: i) Input data: The video and captions can form new video-caption pairs as data augmentation for training. ii) Feature interaction: We perform feature interaction between video and caption to yield enhanced video representations. iii) Output score: The Query-Caption matching branch can be complementary to the original Query-Video matching branch for text-video retrieval. We conduct thorough ablation studies to demonstrate the effectiveness of our method. Without any post-processing, our Cap4Video achieves state-of-the-art performance on MSR-VTT (51.4%), VATEX (66.6%), MSVD (51.8%), and DiDeMo (52.0%).
translated by 谷歌翻译